Microclimates - sustainability space

Authors

  • Liz Alderete Callupe Universidad Nacional del Centro del Perú
  • Carlos Arauzo Gallardo Universidad Nacional del Centro del Perú
  • Helen Olivares Chávez Universidad Nacional del Centro del Perú
  • Henry Juan Javier Ninahuaman Universidad Nacional del Centro del Perú https://orcid.org/0000-0002-3864-4181

DOI:

https://doi.org/10.26490/uncp.alboradaciencia.2025.5.2459

Keywords:

Alteration of Agroclimatic Aptitude, Climate Change, Environmental Sustainability

Abstract

Introduction: Production methods in adverse climates produce an excessive investment expense that limits the farmer to the production and marketing of a small variety of crops. Objective: To compare the feasibility of a thatch wall versus a greenhouse as technologies for creating microclimates in conditions of aggressive wind and extreme cold temperatures. Method: Quantitative, experimental comparison of a completely random design of two factors: Type of microclimate (greenhouse and wind shear wall) and vegetable species (cabbage, cilantro and lettuce), evaluates the parameters of wind intensity, temperature, number of shoots with the comparisons of means by Tukey's posthoc statistic with answers of percentage of production and luminosity. Most important result: Generation of microclimates with a greenhouse and with a wind shear wall by demonstrating non-significant differences of simultaneous CIs of 95% of Tukey in growth, evolution of shoots, production and product quality by colorimetry. Conclusion: The existence, viability and homogeneity of growth parameters, evolution of shoots, production and product quality by colorimetry of the cultivation of vegetables in frigid areas with the generation of microclimates both with a greenhouse and with a wind shear wall.

References

Abanto-Rodríguez, C., Mori, G. M. S., Panduro, M. H. P., Castro, E. V. V., Dávila, E. J. P., & de Oliveira, E. M. (2019). Uso de biofertilizantes en el desarrollo vegetativo y productivo de plantas de camu-camu en Ucayali, Perú. Revista Ceres, 66(2), 108–116. https://doi.org/10.1590/0034-737X201966020005

Álvaro Hernán Alarcón, Geyni Arias, Cristian Javier Díaz, J. D. S. (2017). Sistema de control automático de variables climáticas para optimizar el rendimiento de cultivos bajo cubierta. Ingeniería Solidaria, 2017, 1–17.

Barradas, V. L. (2017). El papel del microclima en la fisiología ecológica vegetal. Botanical Sciences, 39(49), 31. https://doi.org/10.17129/botsci.1364

Du, X., Li, P., Zhao, C., & Sang, G. (2021). The effect of PCM with different thermos-physical parameters on indoor temperature of Xi’an Solar Greenhouse. IOP Conference Series: Earth and Environmental Science, 631(1). https://doi.org/10.1088/1755-1315/631/1/012014

Duval, V. S., & Campo, A. M. (2017). Variaciones microclimáticas en el interior y exterior del bosque de caldén (Prosopis caldenia), Argentina. Cuadernos de Geografía: Revista Colombiana de Geografía, 26(1), 37–49. https://doi.org/10.15446/rcdg.v26n1.42372

Fan, L., Ji, Y., & Wu, G. (2021). Research on Temperature Prediction Model in Greenhouse Based on Improved SVR. IOP Conference Series: Earth and Environmental Science, 1802(4). https://doi.org/10.1088/1742-6596/1802/4/042001

Fausto Robles, I. R. (2009). Cosecha y poscosecha de productos agrícolas para exportación (p. 86).

Fuadati, A. Z., Prastowo, E., & Munawarti, A. (2021). Growth performance of ICCRI 06 H cocoa seedling in response to different microclimate and soil moisture conditions. IOP Conference Series: Earth and Environmental Science, 743(1). https://doi.org/10.1088/1755-1315/743/1/012035

Galvis Vanegas, J. A., González Blair, G. Helena., & Florez Vergara, Alexy. (2010). Manual de procesamiento y conservación de lechugas (Lactuca sativa L.) variedades verde y morada crespa mínimamente procesadas.

Han, Z., Wu, Z., Lin, S., & Luan, F. (2018). An intelligent household greenhouse system design based on Internet of Things. IOP Conference Series: Materials Science and Engineering, 399(1). https://doi.org/10.1088/1757-899X/399/1/012024

He, R., Baležentis, T., Štreimikienė, D., & Shen, Z. (2022). Sustainable green growth in developing economies: An empirical analysis on the belt and road countries. Journal of Global Information Management, 30(6), 1–15. https://doi.org/10.4018/JGIM.20221101.oa1

Hoffmann, R., & Muttarak, R. (2020). Greening through schooling: Understanding the link between education and pro-environmental behavior in the Philippines. Environmental Research Letters, 15(1). https://doi.org/10.1088/1748-9326/ab5ea0

Isnawan, B. H., Samanhudi, Supriyono, & Supriyadi. (2021). Microclimate on rice cultivation of local varieties (Oryza sativa L.) by intermittent irrigation. IOP Conference Series: Earth and Environmental Science, 824(1). https://doi.org/10.1088/1755-1315/824/1/012088

Jani, D. M., Mohd, W. M. N. W., & Salleh, S. A. (2021). Effects of High-Rise Residential Building Shape and Height on the Urban Microclimate in a Tropical Region. IOP Conference Series: Earth and Environmental Science, 767(1). https://doi.org/10.1088/1755-1315/767/1/012031

Kavga, A., Vaiciunas, J., & Fokaides, P. A. (2020). Recent Advancements in the Energy Performance of Intelligent Green Houses: A Case Study. IOP Conference Series: Earth and Environmental Science, 410(1). https://doi.org/10.1088/1755-1315/410/1/012030

Kokieva, G. E., Trofimova, V. S., & Fedorov, I. R. (2020). Greenhouse microclimate control. IOP Conference Series: Materials Science and Engineering, 1001(1). https://doi.org/10.1088/1757-899X/1001/1/012136

Kostarev, S. N., & Sereda, T. G. (2018). Microclimate Control System Development. IOP Conference Series: Materials Science and Engineering, 450(6). https://doi.org/10.1088/1757-899X/450/6/062013

Kröbel, R., Stephens, E. C., Gorzelak, M. A., Thivierge, M. N., Akhter, F., Nyiraneza, J., Singer, S. D., Geddes, C. M., Glenn, A. J., Devillers, N., Alemu, A. W., St. Luce, M., & Giardetti, D. (2021). Making farming more sustainable by helping farmers to decide rather than telling them what to do. Environmental Research Letters, 16(5). https://doi.org/10.1088/1748-9326/abef30

Krupskaya, N. (1986). La educación laboral y la enseñanza (Editorial Progreso, Ed.; 1st ed.). Victor Mednikov.

Li, G., Tang, L., Zhang, X., Dong, J., & Xiao, M. (2018a). Factors affecting greenhouse microclimate and its regulating techniques: A review. IOP Conference Series: Earth and Environmental Science, 167(1). https://doi.org/10.1088/1755-1315/167/1/012019

Li, G., Tang, L., Zhang, X., Dong, J., & Xiao, M. (2018b). Factors affecting greenhouse microclimate and its regulating techniques: A review. IOP Conference Series: Earth and Environmental Science, 167(1). https://doi.org/10.1088/1755-1315/167/1/012019

Lopez, J. (2000). Manejo postcosecha de frutas y hortalizas. Manejo Poscosecha de Frutas y Hortalizas, 86.

Martínez-González, M. E., Balois-Morales, R., Alia-Tejacal, I., Cortes-Cruz, M. A., Palomino-Hermosillo, Y. A., & López-Gúzman, G. G. (2017). Poscosecha de frutos: maduración y cambios bioquímicos Postharvest fruits: maturation and biochemical changes Resumen. Revista Mexicana de Ciencias Agricolas, 19, 4075–4087.

Misni, A., Buyadi, S. N. A., Ahmad, F., Jani, M. F., Zakaria, I. A., & Nordin, N. I. (2019). Microclimate Environmental Model for New Built Environment and Design Complex UiTM Puncak Alam. IOP Conference Series: Earth and Environmental Science, 385(1). https://doi.org/10.1088/1755-1315/385/1/012003

Morin, E. (n.d.). La cabeza bien puesta.

Munar, E. A. V., & Aldana, C. R. B. (2019). Microclimate i simulation in a greenhouse used for roses production under conditions of intertropical climate. Chilean Journal of Agricultural and Animal Sciences, 35(2), 137–150. https://doi.org/10.4067/S0719-38902019005000308

ONU. (2019). Informe de los objetivos del desarrollo sostenible. Informe de Los Objetivos Del Desarrollo Sostenible 2019, 64.

Romnée, A., Vandervaeren, C., Breda, O., & De Temmerman, N. (2019). A greenhouse that reduces greenhouse effect: How to create a circular activity with construction waste? IOP Conference Series: Earth and Environmental Science, 225(1). https://doi.org/10.1088/1755-1315/225/1/012035

Rymarov, A., & Titkov, D. (2021). Formation of Microclimate in Individual Parts of Public Premises. IOP Conference Series: Materials Science and Engineering, 1079(3), 032037. https://doi.org/10.1088/1757899x/1079/3/032037

Statista. (2021). Superficie de invernadero en España en 2020, por tipo de cultivo. 2021. https://es.statista.com/estadisticas/1218414/superficie-agricola-en-invernadero-en-espana-por-tipo-decultivo/

Yang, W. (2021). Simulation study on the influence of roof inclination on the light environment of solar greenhouse. IOP Conference Series: Earth and Environmental Science, 621(1). https://doi.org/10.1088/17551315/621/1/012115

Zhang, Q., He, S., & Yang, X. (2019). Study on Street Space Microclimate Measurement and Improvement Strategy in Yangmeizhu Street in Beijing. IOP Conference Series: Earth and Environmental Science, 267(6). https://doi.org/10.1088/1755-1315/267/6/062002

Downloads

Published

2025-12-31

Issue

Section

Artículos Científicos

How to Cite

Microclimates - sustainability space. (2025). Alborada De La Ciencia, 5(5), 48-56. https://doi.org/10.26490/uncp.alboradaciencia.2025.5.2459