Cytotoxicity assessment of benzyl isotiocyanate from Troapeolum majus L. breast tumor cell lines

Authors

  • Clara Espinoza Silva Engineering in Food Industries / Universidad Nacional del Centro del Perú
  • Miguel Quispe Solano Engineering in Food Industries / Universidad Nacional del Centro del Perú
  • Nora Véliz Sedano Engineering in Food Industries / Universidad Nacional del Centro del Perú
  • Lilian Baños Medina Engineering in Food Industries / Universidad Nacional del Centro del Perú

DOI:

https://doi.org/10.26490/uncp.prospectivauniversitaria.2019.16.1021

Keywords:

Cytotoxicity, MCF-7, Breast cancer, Benzyl Isiocyanate

Abstract

The mastuerzo (Tropaeolum majus L.) is a plant native to Peru, Mexico and parts of Central America. In Peru, It was used since ancient times by our ancestors to combat different diseases. Its components include glucotropaeoline, which when hydrolyzed forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis. Due to this, the aim of the work is to evaluate the cytotoxic effect of benzyl isothiocyanate of mastuerzo exposed to microgravity on the in vitro crop of the MCF7 breast cancer cell line. Extracts of bencil isiothiocyanate from the naturally cultivaded plant were used (T1) and the second were exposed to microgravity at the germination stage (T2), comparing with the commercial product (BI), the cell viability was carried out through the MTT technique making dilutions of 0, 20, 40, 60, 80 and 100 uM of the extract exposed to tumor cell culture of type MCF-7 breast cancer for a time of 12, 24, 48, and 60 hours reading in an ELISA plate reader at 570 nm. Obtaining an LD50 between 22,56 ± 3,24 and 19,97 ± 2,52 at 60 hours, values similar to 48 hours compared to the Benzil control of isiocyanate (BI). In conclusion, no difference were observed between in the effect of the average lethal dose of all treatments in the 48 and 60 hours of incubation an benzyl isiocyanate (BI). The maximum effect of inhibition in all concentrations is appreciable at 60 hours of incubation, stating that there is no significant difference in the biological activities between T1 and T2.

Downloads

Download data is not yet available.

References

Albini, A.; Pennesi, G.; Donatelli, F.; Cammarota, R.; De Flora, S. and Noonan, D. M. (2010). Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardiooncological prevention. Journal of the National Cancer Institute, vol. 102, no. 1, pp. 14–25.

Almidón, H. (2017). Efecto de la microgravedad en tres fases fenológicas del mastuerzo (Tropaeolum majus L.), Tesis de Grado. Disertación. Universidad Nacional del Centro, Huancayo.

Bao, L.; Matsumura, Y.; Baban, D.; Sun, Y. & Tarin, D. (1994). Effects of inoculation site and Matrigel on growth and metastasis of human breast cancer cells. British Journal of Cancer, 70(2), 228–232.

Butnariu, M. & Bostan, C. (2011). Antimicrobial and anti-inflammatory activities of the volatile oil compounds from Tropaeolum majus L. (Nasturtium). African Journal of Biotechnology 10(31):5900-5909. DOI: https:// doi.org/10.5897/AJB11.264.

Caba, O. (2006). Potencial terapéutico de nuevos fármacos antitumorales. Estudio sobre líneas epiteliales. PhD.Disertante. Universidad de Granada. España.

Darwish, A. G. G.; Samy, M. N.; Sugimoto, S.; Matsunami, K. & Otsuka, H. (2018). Componente principal y análisis del mapa de calor de las actividades biológicas para algunas plantas medicinales seleccionadas. Acad. J. Med. Plantas 6 (6): 101-113.

Gamarra, F. & Ramos, M. (2017). Extracción por diclorometano y CO2 supercrítico de isotiocianato de bencilo a partir de hojas de mastuerzo (Tropaeolum majus L.), Tesis de Grado. Disertación. Universidad Nacional del Centro, Huancayo.

Gasparotto Junior, A.; Gasparotto, F. M.; Boffo, M. A.; Lourenço, E. L. B.; Stefanello, M. É. A.; Salvador, M. J.; Da Silva-Santos, J. E.; Marques, M. C. A. & Kassuya, C. A. L. (2011). Diuretic and potassium-sparing effect of isoquercitrin—An active flavonoid of Tropaeolum majus L. Journal of Ethnopharmacology 134(2):210-215. DOI: https://doi.org/10.1016/j.jep.2010.12.009.

Gooch, J. L. & Yee, D. (1999). Strain-specific differences in formation of apoptotic DNA ladders in MCF-7 breast cancer cells. Cancer Letters, 144: 31- 37.

Khan, N. J. (2013). Cell Lines: An in vitro. Model to study breast cancer. International Journal of Innovative Research in Science, Engineering and Technology. 2 (12), 7214–7219.

Lykkesfeld, J. & Lindberg, M. B. (1993). Synthesis of benzylglucosinolate in Tropaeolum majus L. Plant Biochemestry Laboratory. Recuperado el 12 de diciembre, 2016 de maltawildplants.com/TROP/Docs/TPLMJ/ TRPMJSynthesis_Benzylglucosinolate.pdf

Madhuri, S. & Pandey, G. (2009). Some anticancer medicinal plants of foreign origin. Current Science 96 (6): 779-783.

Michalopoulos, G.K. 2007. Liver regeneration. J Cell Physiol 213(2): 286-300.

Mosmann, T. (1983). Rapid colorimetric assay for celular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol Methods. 16; 65(1- 2):55-63.

Pacheco, C.; Tejada, A. & Moreno, L. (2000). Nuestra experiencia con el tratamiento conservador del cáncer de mama. En: Pérez López F.R., editors. Cáncer de mama: biología, diagnóstico y tratamiento. 1a ed. Zaragoza. SEISGE.P.175- 186.

Pérez, P. & Martín, M. (1998). Tratamiento sistémico adyuvante en cáncer de mama precoz. En: Díaz-Rubio E, Escudero M, editors. Cáncer de mama. 1a ed. Madrid: International Marketig & Communications, S.A. P. 141-155.

Rajkapoor B.; Jayakar, B. & Murugesh, N. (2004). Antitumor activity of indigofera aspalathoides on Ehrlich ascites carcinoma on mice. Indian Journal of Pharmacology 36(1): 38-40.

Siabatto, H. (2015). Análisis de los cambios en la expresión génica inducidos por el tratamiento con pseudoterosina en la línea celular de cáncer de mama MDA-MB231 (Tesis inédita para optar el grado de doctor) Universidad Nacional de Colombia

Spiridon, E. & Barberaki, M. (2003). Plants that fight cancer. Editorial Taylor Francis Group. London and New York. (pag 187).

Tari, A. M. & Simeone, A. (2005). Cyclooxygenase-2 protein reduces tamoxifen and N-(4- hydroxyphenyl) retinamide inhibitory effects in breast cancer cells. Lab Invest 85(11): 1357- 1367.

Wattenberg, L. W. (1981). Inhibition of carcinogen-induced neoplasia by sodium cyanate, tert-butyl isocyanate, and benzyl isothiocyanate administered subsequent to carcinogen exposure. Cáncer Research 41(8):2991-2994

Downloads

Published

2022-02-22

Issue

Section

Area II - Agricultural Science

How to Cite

Cytotoxicity assessment of benzyl isotiocyanate from Troapeolum majus L. breast tumor cell lines. (2022). University Prospective in Engineering and Technology, 16(1), 23-27. https://doi.org/10.26490/uncp.prospectivauniversitaria.2019.16.1021