PRONÓSTICO DE CAUDALES MEDIOS MENSUALES DEL RIO CAPLINA, APLICANDO REDES NEURONALES ARTIFICIALES (RNA) Y MODELO AUTOREGRESIVO PERIÓDICO DE PRIMER ORDEN PAR(1)

Autores/as

  • Edwin Pino Vargas Universidad Nacional del Centro del Perú
  • Luís Siña Espino Universidad Nacional del Centro del Perú
  • Carmen Román Arce Universidad Nacional del Centro del Perú

DOI:

https://doi.org/10.26490/uncp.prospectivauniversitaria.2011.8.1261

Palabras clave:

cuenca caplina, redes neuronales artificiales, series de tiempo

Resumen

El río Caplina es el principal tributario de la cuenca hidrográfica del mismo nombre; tiene una extensión de 4 239,09 km2, esto hace que sea una de las principales fuentes de abastecimiento de agua para distintos usos en la ciudad de Tacna. Por esta razón diversas entidades se han interesado en conocer la disponibilidad hídrica actual y futura del rio Caplina, ya que conocer dichos valores es de fundamental importancia para el planeamiento y manejo de los sistemas de recursos hídricos. Los modelos estocásticos han sido durante largo tiempo, la alternativa más común en la predicción de caudales. Actualmente, las herramientas de computación inteligente como las redes neuronales artificiales, especialmente las redes multi-capas con algoritmo de retro propagación. En este contexto, la actual investigación centró sus esfuerzos en la aplicación de las redes neuronales a la predicción de los caudales medios mensuales del río Caplina, Estación Bocatoma Calientes, desarrollo de modelos de redes neuronales a partir de datos de caudales, precipitación y evaporación, así como la evaluación de la capacidad de desempeño frente a modelos estocásticos. De esta manera, se desarrollaron 10 modelos de redes neuronales artificiales con distintas arquitecturas, cuyo entrenamiento se realizó con un primer subconjunto de datos correspondientes al periodo 1939 – 1999, y su validación con un segundo subconjunto de datos del periodo 2000 – 2006. Los modelos de redes neuronales artificiales mostraron comparativamente mejor desempeño en materia de predicción frente a un modelo autorregresivo periódico de primer orden PAR (1).

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Alegre, A. Simulación de redes neuronales artificiales: Una aplicación didáctica. Tesis Lic. Sistemas. Universidad Nacional del Nordeste. Corrientes, Argentina. 2003.

Dolling, O. Sistemas de apoyo a la gestión integral de cuencas hidrográficas. Tesis Dr. Universidad Nacional San Juan. Santiago, Chile. 2001.

Tokar, A; MARKUS, M. Precipitation-runoof modeling using artificial neural networks and conceptual models. 2000.

Laqui, W. Predicción de caudales mensuales del rio Huancané utilizando modelos de redes neuronales artificiales. 2008.

Dölling, O. Utilización de redes neuronales artificiales al pronóstico de caudales en cuencas nivales. 2001.

Zúñiga, A; Jordán, C. Pronostico de caudales medios mensuales empleando sistemas neurofuzzy. 2005.

Evolución y ordenamiento de los recursos hídricos en las cuencas de los ríos Caplina y Uchusuma, 2002

Descargas

Publicado

2022-01-15

Número

Sección

Area III - Arquitectura e Ingenieria

Cómo citar

PRONÓSTICO DE CAUDALES MEDIOS MENSUALES DEL RIO CAPLINA, APLICANDO REDES NEURONALES ARTIFICIALES (RNA) Y MODELO AUTOREGRESIVO PERIÓDICO DE PRIMER ORDEN PAR(1). (2022). Prospectiva Universitaria En Ingeniería Y Tecnología, 8(1), 163-167. https://doi.org/10.26490/uncp.prospectivauniversitaria.2011.8.1261