Treatment of residual water contaminated with copper using Lemna minor (water bean)

Authors

  • Gladys Maritza Avila Carhuallanqui National University of the Center of Peru
  • Carmen Velít Villareal National University of the Center of Peru.
  • Lucho Emiliano Avila Pichiule National University of the Center of Peru.

DOI:

https://doi.org/10.26490/uncp.prospectivauniversitaria.2018.15.859

Keywords:

Phytoremediation, Wastewater, Plant tissue, Nutrient solution, Copper ion

Abstract

The present research work has as objective evaluating the copper ion phytoremediation by means of the lentil water species (Lemna minor) in mining wastewater, for this the water with copper ions was prepared at a concentration of 4,780 ppm; having as reference the discharge of an effluent of mining wastewater, the vegetal tissue was in contact with copper for several weeks, then the nutrient solution for the Lemna minor species was prepared, the contact of the plant with the water was carried out with copper ions and the nutrient solution of the plant for 5 weeks, each week the copper in the water analysis was carried out, in the fifth week the copper concentration in the wáter was 1,502 ppm, having a copper removal of 68,57 %. This concludes that Lemna minor species has depurative capacity in mining wastewater.

Downloads

Download data is not yet available.

References

A Citizen’s Guide to Phytoremediation. (2012). EPA,1.

Arenas Adolfo D. (2011). Evaluación de la planta Lemna minor como biorremediadora de aguas contaminadas con mercurio. Universidad Centro Occidental Lisandro Alvarado, Decanato de Agronomía, Dpto. De Química y Suelos, Cabudare, Estado Lara – Venezuela.

Arias, A., Alejandra, R., Fernández, V., & Sánchez, N. E. (2016). Lenteja de agua (Lemna minor) para el tratamiento de las aguas residuales que provienen del lavado de la fibra de fique (Furcraea bedinghausii).Ingeniería y competitividad.

Arroyave, M. d. (2004). La lenteja de agua (Lemna Minor L.): Una planta acuática promisoria*. Revista EIA, 33-38. Blowes, D. W. (2003). Mill tailings: hydrogeology and geochemistry. Environmental Aspects of Mine Wastes, 95–116.

Bres, P., D., C., Rizzo, P., & La Rossa, R. (2012). Capacidad de las macrófitas Lemna minor y Eichhornia crassipes para eliminar níquel. Revista de Investigaciones Agropecuarias.

Ciencias (2000). Enciclopedias. España. Everest.

Chapman, B. M. (1983). Processes controlling metal ion attenuation in acid mine drainage streams. Geochimica et Cosmochimica Acta 47, 1957-1973.

Cherian, S., & Margarida, O. M. (2005). Transgenic Plants in Phytoremediation: RecentAdvances and New Possibilities. Environmental Science & Technology, 1.

Cunningham, S., Berti W. & Huang J. (1995). Phytoremediation of contaminated soils.

Culley, D.D., Rejma´nkova´, E., Kvet, J., Frye, J.B., 2009. Production chemical quality and use of duckweeds (Lemnaceae) in aquaculture waste management and animal feeds. J. World Aquacult. Soc. 12, 27–9

Director General de la UNESCO. (1971). Ramsar Convention on Wetlands of International Importance especially as Waterfowl Habitat. Convention on Wetlands, (pág. 169). Iran.

EPA. (1994). Copper – Extraction and Beneficiation of Ores and Minerals. Washington, DC.

GBR. (2012). Mining in Turkey. Global Business Report. E&MJ.

Go botany. (s.f.). Obtenido de https://gobotany.newenglandwild.org/species/lemna/minor/.

Godfrey, R., Wooten, J., 1979. Aquatic and Wetland Plants of Southeastern United States, first ed. University of Georgia Press, Athens.

Gupta, C., Prakash, D., 2013. Duckweed: an effective tool for phyto-remediation. Toxicol. Environ. Chem. 95, 1256–1266.

Hernández, S., Fernández C. & Baptista L. (2003). Metodología de la investigación.

Jaramillo, M., Flores E. (2012). Fitoremediación mediante el uso de dos especies vegetales Lemna minor (Lenteja de agua) y Eichornia crassipes (Jacinto de agua) en aguas residuales producto de la actividad minera. Cuenca. Ecuador.

Kutschera, U., Niklas, K., 2015. Darwin-Wallace Demons: survival of the fastest in populations of duckweeds and the evolutionary history of an enigmatic group of angiosperms. Plant Biol. 17, 24–32.

Martelo, J. y Lara Borrero, J. (2012). Macrófitas flotantes en el tratamiento de aguas residuales: una revisión del estado del arte. Ingeniería y Ciencia, 8(15): 221-243 Plants For A Future. (21 de Junio de 2009). Obtenido de https://www.pfaf.org/user/Plant.aspx?LatinName=Lemna+minor.

Skillicorn, P., Journey, W., Spira, W., 1993. Duckweed Aquaculture, first ed. World Bank, Washington, DC.

Stirk, W., Van Staden J., (2001) Some Physical Factors Affecting Adsorption of Heavy Metals from Solution By Dried Brown Seaweed Material. South African Journal of Botany. 67. 615-619.

The Sierra Fund. (2008). Mining’s Toxic Legacy: An Initiative to Address Mining Toxins in the Sierra Nevada.

Wetland Wildflowers of Illinois. (s.f.). Obtenido de http://www.illinoiswildflowers.info/wetland/plants/cm_duckweed.htm

Yue, L. (2018). Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. Environmental Pollution, 1-30.

Zimmo, O., 2003. Nitrogen Transformations and Removal Mechanisms in Algal and Duckweed Waste Stabilization Ponds (Ph.D. thesis). International Institute for Infrastructural Hydraulic and Environmental Engineering, Delft, Netherlands.

Zhao, Z., Shi, H., Duan, D., Li, H., Lei, T., Wang, M., 2015a. The influence of duckweed species diversity on ecophysiological tolerance to copper exposure. Aquat. Toxicol. 164, 92–98.

Zhao, Y., Fang, Y., Jin, Y., Huang, J., Bao, S., Fu, T., 2015b. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production. Plant Biol. 17, 82–90.

Zirschky, J., Reed, S., 1988. The use of duckweed for wastewater treatment. J. Water Pollut. Control Fed. 60, 1253–1258

Downloads

Published

2021-02-21

Issue

Section

Area III - Architecture and Engineering

How to Cite

Treatment of residual water contaminated with copper using Lemna minor (water bean). (2021). University Prospective in Engineering and Technology, 15(1), 101-104. https://doi.org/10.26490/uncp.prospectivauniversitaria.2018.15.859