Tolerance and accumulation of lead in baccharis pentlandii dc as treatment mining tailing substrates

Authors

  • Edith Orellana Mendoza Universidad Nacional del Centro del Perú

DOI:

https://doi.org/10.26490/uncp.prospectivauniversitaria.2012.9.35

Keywords:

Phytoremediation, heavy metal, tolerance, accumulation

Abstract

The use of plant species such as decontamination agents of contaminated soils with heavy metals is an economical and clean technological alternative that deserves to be studied. The study consists of determining the ability of tolerance and accumulation of lead in Baccharis pentlandii DC according to treatment of substrates with tailings. Studied experimental units corresponded to seedlings of 3.5 cm high, which are established in polyethylene bags containing substrates with mixture of tailings; the completely randomized with three treatments and six replications design is adopted. At ten months, B. pentlandii records differences in tolerance and accumulation of Pb, plants experience different and significant growths. The lead storage capacity varies according to the proportion of tailings in the substrate; treatments in the ratio 1 (soil): 1 (tailings) and 2 (floor): 1 (tailings) influence the greater accumulation in the root on the aerial part of the plant. The highest total concentration of Pb is observed in the substrate of agricultural soil treated with tailings in the proportion 1:1 with 400 mg kg - 1 of Pb. According to the values of accumulation this species cannot be classified as lead hiperacumulator.

Downloads

Download data is not yet available.

References

Alkorta, I., Hernández – Allica, J., Becerril, J.M., Amezaga, I., Albizu, I. Garbisu, C. (2004). Recent finding on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Environmental Science Biotechnology, 3:71-90.

Baker, A. y Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemestry. Biorecovery, 1:81-108.

Baker, A.J.M., McGrath, S.P., Reeves, R.D. and Smith, J.A.C. (2000). Metal hyperacumulator plants: a review of he ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. En: hytoremediation of Contaminated Soil and Water (eds. Terry, N. y Bañuelos, G.), pp. 85-107, Lewis Publishers, Boca Raton, FL, SA.

Becerril, J., Barrutia, J., García Plazaola, J., Hernández, A., Olano, J. y Garbisu, C. (2007). Especies nativas de suelos contaminados por metales: aspectos ecofisiológicos y su uso en fitorremediación. Ecosistemas, 16 (2).

Brooks, R.R., Lee, J., Reeves, R.D. and Jaffré, T. (1977). Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal Geochemical Exploration, 7: 49-57.

Calderón V. y Maldonado, M. (2008). Contaminación e intoxicación por plomo. México:Trillas.

Carpena, R. y Bernal, M.(2007). Claves de la fitorremediación: fitotecnologías para la recuperación de suelos. España: Universidad Autónoma de Madrid.

Donoso, C. (2001). Ecología forestal, el bosque y su medio ambiente. Facultad de Ciencias Forestales. (3ª ed.). Chile: Universidad Austral de Chile.

Durán, P. (2010). Transferencia de metales de suelo a planta en áreas mineras: Ejemplos de los Andes peruanos y de la Cordillera Pre litoral Catalana. (Tesis doctoral). Universidad de Barcelona. Barcelona, España.

Downloads

Published

2022-01-08

Issue

Section

Area II - Agricultural Science

How to Cite

Tolerance and accumulation of lead in baccharis pentlandii dc as treatment mining tailing substrates. (2022). University Prospective in Engineering and Technology, 9(1), 46-52. https://doi.org/10.26490/uncp.prospectivauniversitaria.2012.9.35