Effectiveness of Fenton and Fenton-like processes in the treatment of cheese effluents

Authors

  • Salvador Teodulo Oré Vidalon Faculty of Civil Engineering / National University of Central Peru
  • Leonor Jesús Guzmán Estremadoyro Faculty of Civil Engineering / National University of Central Peru

DOI:

https://doi.org/10.26490/uncp.prospectivauniversitaria.2022.19.1962

Keywords:

Fenton-like, Fenton process, Cheese whey treatment

Abstract

Cheese effluents have often been defined as high concentration wastewaters with maximum Chemical Oxygen Demand (COD) values. Iron-based catalysts have been discussed because the main idea of the Fenton and Fenton-like processes originated using iron-containing materials. Iron is a metal that forms stable complexes with the degradation products. Under these considerations, the objective is to evaluate the homogeneous Fenton and Fenton-like process as an alternative for the treatment of cheese whey. According to the experimental design applying Taguchi's method and solving with Minitab 18 statistical software, the main factors of hydrogen peroxide/ferrous ion ratio and pH are significant for the Fenton process. For the Fenton-like process the significant main factors are temperature, hydrogen peroxide/ferrous ion ratio and time. The interactions are not significant at the 0.05 significance level. The main factors are outside the decision limits, according to the analysis of means by interaction effects for the Fenton and Fenton-like process and these conditions indicate that the difference between each of these means and the overall mean is statistically significant. The regression equation in uncoded units for the Fenton process was: Y 2+DQO = (88.83-0.045×Temperature-1.928H2O2)/(Fe2+-4.66×pH-0. 124×Time) and for the Fenton-like process was: Y 3+DQO = (-6.59+1.196×Temperature+0.975H2O2)/(Fe3+ +1.02×pH +0.215×Time) Keywords: Fenton process, Fenton-like, cheese whey treatment.

Downloads

Download data is not yet available.

References

APHA. (2005). Standard Methods for the Examination of Water and Wastewater (21 ed.). American Public Health Association.

Berton, M., Bovolenta, S., Corazzin, M., Gallo, L., Pinterits, S., Ramanzin, M., Ressi, W., Spigarelli, C., Zuliani, A., & Sturaro, E. (2021). Environmental impacts of milk production and processing in the Eastern Alps: A “cradle-to-dairy gate” LCA approach. Journal of Cleaner Production, 303, 127056. https://doi.org/10.1016/j.jclepro.2021.127056

Canchucaja, R. G. (2018). Aplicación del reactivo fenton al lactosuero pretratado por precipitación ácido-térmico [Tesis de maestría]. Universidad Nacional del Centro del Perú. Consultado el 6 de febrero de 2024, desde http://repositorio.uncp.edu.pe/handle/20.500.12894/5100 Accepted: 2019-07-09T20:47:46Z.

Guerrero-Navarro, A. E., Ríos-Castillo, A. G., Ripolles-Avila, C., Felipe, X., & Rodríguez-Jerez, J. J. (2020). Microscopic analysis and microstructural characterization of the organic and inorganic components of dairy fouling during the cleaning process. Journal of Dairy Science, 103(3), 2117-2127. https://doi.org/10.3168/jds.2019-16957

Hoseinpour-Lonbar, M., Alavi, M. Z., & Palassi, M. (2020). Selection of asphalt mix with optimal fracture properties at intermediate temperature using Taguchi method for design of experiment. Construction and Building Materials, 262, 120601. https://doi.org/10.1016/j.conbuildmat.2020.120601

Hussain, S., Aneggi, E., & Goi, D. (2021). Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: A review. Environmental Chemistry Letters, 19(3), 2405-2424. https://doi.org/10.1007/s10311-021-01185-z

Kaur, N. (2021). Different treatment techniques of dairy wastewater. Groundwater for Sustainable Development, 14, 100640. https://doi.org/10.1016/j.gsd.2021.100640

Kumar, T. B., Panda, A., Kumar Sharma, G., Johar, A. K., Kar, S. K., & Boolchandani, D. (2020). Taguchi DoE and ANOVA: A systematic perspective for performance optimization of cross-coupled channel length modulation OTA. AEU - International Journal of Electronics and Communications, 116, 153070. https://doi.org/10.1016/j.aeue.2020.153070

Liviac, D., & Vela, R. (2016). Tratamiento Anaerobio Del Suero de Queso En Reactores Discontinuos y Uasb a Escala Laboratorio. Anales Científicos, 77(2), 147. https://doi.org/10.21704/ac.v77i2.484

Mazorra-Manzano, M. Á., Ramírez-Montejo, H., Lugo-Sánchez, M. E., González-Córdova, A. F., & Vallejo-Córdoba, B. (2019). Caracterización Del Lactosuero y Requesón Proveniente Del Proceso de Elaboración de Queso Cocido (Asadero) Región Sonora. Nova Scientia, 11(23), 220-233. https://doi.org/10.21640/ns.v11i23.2072

Meyerstein, D. (2021). Re-examining Fenton and Fenton-like reactions. Nature Reviews Chemistry, 5(9), 595-597. https://doi.org/10.1038/s41570-021-00310-4

MIDAGRI. (2021). Resolución Ministerial N.° 0220-2021-MIDAGRI. plan de acción de intervención sectorial para el fortalecimiento de la cadena productiva de leche y derivados lácteos vinculada a la pequeña ganadería familiar 2021-2024. Consultado el 6 de febrero de 2024, desde https://www.gob.pe/institucion/midagri/normas-legales/2078313-0220-2021-midagri

MINAGRI. (2017). Decreto Supremo Nº007-2017-MINAGRI. Reglamento de La Leche y Productos Lácteos. Consultado el 6 de febrero de 2024, desde https://www.midagri.gob.pe/portal/decreto-supremo/ds-2017/19598-decreto-supremo-n-007-2017-minagri

Salas-Vargas, C., Brunett-Pérez, L., Espinosa-Ortiz, V. E., & Martínez-García, C. G. (2021). Environmental impact of Oaxaca cheese production and wastewater from artisanal dairies under two scenarios in Aculco, State of Mexico. Journal of Cleaner Production, 311, 127586. https://doi.org/10.1016/j.jclepro.2021.127586

Taiwo, A. E., Madzimbamuto, T. N., & Ojumu, T. V. (2020). Optimization of process variables for acetoin production in a bioreactor using Taguchi orthogonal array design. Heliyon, 6(10), e05103. https://doi.org/10.1016/j.heliyon. 2020.e05103

Wahyudin, Kharisma, A., Murphiyanto, R. D. J., Perdana, M. K., & Kasih, T. P. (2017). Application of Taguchi Method and ANOVA in the Optimization of Dyeing Process on Cotton Knit Fabric to Reduce Re-Dyeing Process. IOP Conference Series: Earth and Environmental Science, 109, 012023. https://doi.org/10.1088/1755-1315/109/1/012023

Ziembowicz, S., & Kida, M. (2022). Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: A critical review. Chemosphere, 296, 134041. https://doi.org/10.1016/j.chemosphere.2022.134041

Downloads

Published

2024-02-14

Issue

Section

Original article

How to Cite

Effectiveness of Fenton and Fenton-like processes in the treatment of cheese effluents. (2024). University Prospective in Engineering and Technology, 19(1), 110-115. https://doi.org/10.26490/uncp.prospectivauniversitaria.2022.19.1962