Evaluation of the concentration of radon 222 depending on the type of soil and hours of day in the southern zone of Huancayo
DOI:
https://doi.org/10.26490/uncp.prospectivauniversitaria.2021.18.1649Keywords:
Radon 222, Isotope, Soil, Radioactive gas, Waterproofing, Lung cancerAbstract
The present research work addressed the topic of radon gas, because it is a radioactive gas that, when inhaled, can cause damage to the lungs. In view of this, the main objective of the research was to determine radon 222 concentrations based to the type of soil and monitoring hours of the day in the districts of the southern zone of Huancayo. A methodology with a quantitative approach, with an experimental scope and a scientific method was proposed. The development of the theoretical perspective was based on the review of academic documentation and the radon equipment RD200 Radon Eye was used to obtain the data used in carrying out the work presented. According to the IPEN, with the analysis presented, it is concluded that the radon 222 level of the sampled dwellings are homes that are below the maximum permissible limit, according to the OMS the maximum allowable limit is 4.0 pCi /l, but housing above the maximum permissible limit was also found, whose concentrations were in the range of 2.09 and 8.17 pCi /l. It was concluded also that radon levels varied according to the hours of the day, influenced by the type of soil, with higher concentrations found in coarse sandy type. According to research, the average indoor radon level is estimated to be around 1.3 pCi / l. A radon level > 4 pCi /l represents risk; however, according to the OMS, it is recommended to consider solving the radon problem if the levels are between 2 and 4 pCi /l, generally the alternatives to solve the problem are waterproofing the base of the homes, actions that have been applied in several countries.
Downloads
References
Agency, U. S. (2009). Citizen’s guide to radon: the guide to protecting yourself and your family from radon. Indoor Environments Division. Washington, DC: Environmental Protection Agency.
Barros, N. (2012). Predictability of radon airborne measurements based on surrogate measures. Iowa: Iowa Research Online.
Bensryd, I. R. (2003). Geochemistry and ground permeability as determinants of indoor radon concentrations in southernmost Sweden. Pergamon, -9.
Canaan, R. (2019). ¿Qué son los métodos de investigación? Universidad Rafael Belloso Chacín. Obtenido de Lifeder.com: https://www.lifeder.com/tipos-metodos-de-investigacion/
Cancer, I. A. (1988). Man-made mineral fibres and radon.Francia: IARC.
Canoba, A. & López , F. (2006). Mediciones de 222Rn en el interior de viviendas de la República Argentina. Acapulco: Primer Congreso Americano del IRPA.
Colmero Sujo, L. & De Lourdes Villalba, M. (2010). Presencia de radón en casas habitación del Estado de Chihuahua. Chihuahua: TECNOCIENCIA.
Dainius Jasaitis, A. D. (2012). Variation of activity concentration of radon decay products in the Curonian Spit. EKOLOGIJA, 1-8.
Anderson, E. (1952). Units of radiation and radioactivity. New York: Public Health Reports.
FTLab. (2019). RadonEye operation manual. FTLab.
Gamboa Mariñas, M. (2019). El suelo, tipos de suelo y composición. Lima
Guevara Rojas, V. Y. (2018). Medición de radón 222 en lugares de trabajo ubicados en sótanos. Lima.
HO, W. (1978). International system of units (SI). New York: American Journal of Roentgenology.
Huancayo.Info. (2010). Portal de turismo de Huancayo. Huancayo.
INEI. (2012). Provinvia de Huancayo.
Organization, W. H. (2009). Handbook on indoor radon: a public health perspective. Geneva, Switzerland: WHO
Radiations, C. o. (1999). Health Effects of Exposure to Indoor Radon. Washington, DC: National Academy Press.
Registry, A. f. (2009). Toxicological profile for radon. Atlanta: US Department of Health and Human Services, Public Health Service,.
Rojas Hancco, J. J. (2016). Monitoreo de radón 222 en la zona sur de Lima. Lima: PUCP
Malakhov, S. G.; Bakulin, V. N.; Dmitrieva, G.V.; Kirichenko, L.; Ssissigina, T. I. & Starikov, B. G. (1966). Diurnal variations of radon and thoron decay product concentrations in the surface layer of the atmosphere and their washout by precipitations. Tellus A, 18, 643-654.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Iván Luis Osorio López
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Esta Revista es de acceso abierto a su contenido a través del Internet, poniendo a disposición de la comunidad científica los resultados de la investigación, de manera gratuita, para el intercambio del conocimiento desarrollado.
El contenidos de la Revista se distribuyen bajo la licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.