Osmotic dehydration of yellow mashua (Tropaleum tuberosa) with inverted sucrose syrup and passion fruit juice
DOI:
https://doi.org/10.26490/uncp.prospectivauniversitaria.2020.17.1389Keywords:
Posmotic kinetics, Phenols, Antioxidant capacity, Andean tuber, Osmotic dehydrationAbstract
The objective was to evaluate the effect of incorporation of passion fruit juice in the sucrose invert syrup and inmersion (30 °C and 40 °C) on the kinetic parameters, total polyphenols and antioxidant capacity in the osmotic dehydrated (DO) of yellow mashua (Tuberous tropaleum). The raw material was cut into 4 mm thick sheets, blanching at 89 °C boiling for 15 minutes, immersion in osmotic solution (invert syrup of sucrose at 60 °Brix and passion fruit juice) proportions (65:35, 70: 30 and 75:25) concentrations of 37.5 °Brix, 41.5 °Brix and 40.5 °Brix respectively, draining, hot air drying at 50 °C with 1.4 ± 0.1 m s air velocity and packaging. The DO was carried out for 4.5 hours, the evaluated kinetic parameters were: weight loss percentage (WLP%), solid gain rate (GS) and water loss rate (WL), the total polyphenols were measured by the Follin Ciocalteu method and the antioxidant capacity by the ABTS method. Obtaining the following results: (WLP%) ranged between 19.24 % ± 0.02 and 23.56 % ± 0.07; the treatment at 37.5 ° Brix and 40°C had the highest (WLP%) 23.56 %± 0.07, the highest rate of (GS) 0.715 ± 0.003 g of solid/g fruit and the highest rate of (WL) 0.388 ± 0.006 g of water/g fruit. The total polyphenol content and antioxidant capacity decrease in treatments, the lowest loss at 41.5 °Brix and 30 °C determined 7.57 ± 0.21 mg EAG/g MS and 21.12 ± 0.16 μmol TE/g MS 17 % and 11.78 % respectively. The interaction of concentration and temperature has significant effects (P <0.05) on the kinetic parameters and on the total polyphenols and antioxidant capacity by the ABTS method
Downloads
References
Agostini, L. R.; Morón Jiménez, M. J.; Ramón, A. N. & Ayala Gómez, A. (2004). Determinación de la capacidad antioxidante de flavonoides en frutas y verduras frescas y tratadas térmicamente. Archivos Latinoamericanos de Nutricion, 54(1), 89–92.
Ahmed, I.; Qazi, I. M. & Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 29–43. https://doi.org/10.1016/j.ifset.2016.01.003
Akharume, F.; Singh, K. & Sivanandan, L. (2019). Effects of liquid smoke infusion on osmotic dehydration kinetics and microstructural characteristics of apple cubes. Journal of Food Engineering, 246, 51–57. https://doi.org/10.1016/j.jfoodeng.2018.10.030
Alakali, J. S.; Ariahu, C. C. & Nkpa, N. N. (2006). Kinetics of osmotic dehydration of mango. Journal of Food Processing and Preservation, 30(5), 597–607. https://doi.org/10.1111/j.1745-4549.2006.00080.x
Assis, F. R.; Manuel, R.; Costa, S.; María, A. & Bernardo, M. (2018). Case study mathematical modelling of the osmotic dehydration of physalis Modelagem matemática da desidratação osmótica da physalis. https://doi.org/10.1590/1981-6723.10217
Betalleluz-Pallardel, I.; Chirinos, R.; Rogez, H.; Pedreschi, R. & Campos, D. (2012). Phenolic compounds from Andean mashua (Tropaeolum tuberosum) tubers display protection against soybean oil oxidation. Food Science and Technology International, 18(3), 271–280. https://doi.org/10.1177/1082013211427794
Chirinos, R.; Campos, D.; Warnier, M.; Pedreschi, R.; Rees, J. F. & Larondelle, Y. (2008). Antioxidant properties of mashua (Tropaeolum tuberosum) phenolic extracts against oxidative damage using biological in vitro assays. Food Chemistry, 111(1), 98–105. https://doi.org/10.1016/j.foodchem.2008.03.038
Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R. & Larondelle, Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology, 55(2), 217–225. https://doi.org/10.1016/j.seppur.2006.12.005
Domínguez-Rodríguez, G.; García, M. C.; Plaza, M. & Marina, M. L. (2019). Revalorization of Passiflora species peels as a sustainable source of antioxidant phenolic compounds. Science of the Total Environment, 696, 134030. https://doi.org/10.1016/j.scitotenv.2019.134030
Falade, K. O.; Igbeka, J. C. & Ayanwuyi, F. A. (2007). Kinetics of mass transfer and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3), 979–985. https://doi.org/10.1016/j.jfoodeng.2006.06.033
Guiamba, I.; Ahrné, L.; Khan, M. A. M. & Svanberg, U. (2016). Retention of β-carotene and vitamin C in dried mango osmotically pretreated with osmotic solutions containing calcium or ascorbic acid. Food and Bioproducts Processing, 98, 320–326. https://doi.org/10.1016/j.fbp.2016.02.010
Kyi, T. M.; Daud, W. R. W.; Mohamad, A. B.; Samsudin, M. W.; Kadhum, A. A. H. & Talib, M. Z. M. (2005). The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. International Journal of Food Science and Technology,
(3), 323–331. https://doi.org/10.1111/j.1365-2621.2005.00959.x
Leidi, E. O.; Altamirano, A. M.; Mercado, G.; Rodriguez, J. P.; Ramos, A.; Alandia, G., Jacobsen, S. E. (2018). Andean roots and tubers crops as sources of functional foods. Journal of Functional Foods, 51(August), 86–93. https://doi.org/10.1016/j.jff.2018.10.007
Liu, B.; Feng, W. & Peng, B. (2019). Modeling and optimization of process parameters for improving osmotic dehydration of kiwifruit. Italian Journal of Food Science, 31(1), 75–86.
Manrique, I.; Arbizu, C.; Vivanco, F.; Gonzáles, R.; Ramírez, C.; Chávez, O.; Ellis, D. (2013). Tropaeolum tuberosum Ruíz & Pav. Colección de germoplasma de mashua conservada en el Centro Internacional de la Papa (CIP). In Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004
Mascheroni, R. H.; Scientific, N. & Ramallo, L. A. (2016). Incorporación de vitamina C y calcio durante el proceso de deshidratación osmótica de ananá. (November).
Nagai, L. Y.; Santos, A. B.; Faria, F. A.; Boscolo, M. & Mauro, M. A. (2015). Osmotic Dehydration of Mango with Ascorbic Acid Impregnation: Influence of Process Variables. Journal of Food Processing and Preservation, 39(4), 384–393. https://doi.org/10.1111/jfpp.12243
Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Porrini, M. (2010). Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. Journal of Agricultural and Food Chemistry, 58(7), 4310–4321. https://doi.org/10.1021/jf904306r
Rocca, P. Della & Mascheroni, R. (2011). Deshidratación de papas por métodos combinados de secado: deshidratación osmótica, secado por microondas y conveccióncon aire caliente 1. Proyecciones, 9(2), 11–26. Retrieved from file:///D:/INV2019/ART ESPAÑOL DO/della2011 do papa.pdf - http://sedici.unlp.edu.ar/bitstream/handle/10915/73071/Documento_completo.pdf-PDFA.pdf?sequence=1&isAllowed=y
Sacchetti, G.; Gianotti, A. & Dalla Rosa, M. (2001). Sucrose-salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 49(2–3), 163–173. https://doi.org/10.1016/S0260-8774(00)00206-5
Silva, K. S.; Fernándes, M. A. & Mauro, M. A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134, 37–44. https://doi.org/10.1016/j.jfoodeng.2014.02.020
Tortoe, C. (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4(6), 303–324. Retrieved from http://www.academicjournals.org/ajfs
Vega-Gálvez, A.; Palacios, M.; Boglio, F.; Pássaro, C.; Jeréz, C. & Lemus-mondaca, R. (2007). Influencia de la temperatura y concentración de la solución sobre la cinética de transferencia de materia. Ciência Tecnologia Alimentos Campinas, 27(3), 470–477.
Yadav, A. K. & Singh, S. V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51(9), 1654–1673. https://doi.org/10.1007/s13197-012-0659-2
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Edgar Rafael Acosta López
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Esta Revista es de acceso abierto a su contenido a través del Internet, poniendo a disposición de la comunidad científica los resultados de la investigación, de manera gratuita, para el intercambio del conocimiento desarrollado.
El contenidos de la Revista se distribuyen bajo la licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.