Effect of chitosan on the growth and development of gladiolus (Gladiolus sp.) in Mantaro, Jauja
Keywords:
Gladiolu, Chitosan, GreenhouseAbstract
Chitosan is known for improving crop quality and yield, as well as acting as a bactericide and fungicide. To validate these effects, this research was conducted. Objective: To determine the optimal chitosan dosage and immersion time for enhancing the growth and development of gladiolus (Gladiolus sp.) corms. Method: The study was conducted in a greenhouse, using pots to evaluate each corm following the morphological evaluation method. Two immersion times (30 and 60 minutes) and five chitosan doses (10 ml, 15 ml, 20 ml, 25 ml, and 30 ml) at 1% per liter of water were tested. Ten treatments, plus a control, were applied, distributed in three blocks under a Completely Randomized Block Design (CRBD) with factorial analysis. Results: The treatment with 10 ml of chitosan at 1% and 30 minutes of immersion showed the best results in terms of the number of leaves, plant height, number of flowers, days to flower opening, and stem length. The second best treatment was 15 ml of chitosan at 1% with 30 minutes of immersion. Conclusion: The research concludes that the treatment with 10 ml of chitosan at 1% for 30 minutes of immersion optimizes the growth and development of gladiolus, improving the main morphological variables studied.
Downloads
References
Abo-Elsoud, M. M., & El Kady, E. M. (2019). Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre, 43(1), 59. https://doi.org/10.1186/s42269-019-0105-y
Adiletta, G., Zampella, L., Coletta, C., & Petriccione, M. (2019). Chitosan Coating to Preserve the Qualitative Traits and Improve Antioxidant System in Fresh Figs (Ficus carica L.). Agriculture, 9(4), 84. https://doi.org/10.3390/agriculture9040084
Ahmed, T., Noman, M., Luo, J., Muhammad, S., Shahid, M., Ali, Md. A., Zhang, M., & Li, B. (2021). Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. International Journal of Biological Macromolecules, 168, 834–845. https://doi.org/10.1016/j.ijbiomac.2020.11.148
Ambaye, T. G., Vaccari, M., Prasad, S., Van Hullebusch, E. D., & Rtimi, S. (2022). Preparation and applications of chitosan and cellulose composite materials. Journal of Environmental Management, 301, 113850. https://doi.org/10.1016/j.jenvman.2021.113850
Azimi, M. H. (2020). Evaluation yield and genetically factors in different cultivars of gladiolus. Ornamental Horticulture, 26(1), 8–17. https://doi.org/10.1590/2447-536x.v26i1.2027
Azmana, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. B., & Ahmed, S. (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules, 185, 832–848. https://doi.org/10.1016/j.ijbiomac.2021.07.023
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, Md. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture, 10(12), 624. https://doi.org/10.3390/agriculture10120624
Chouhan, D., & Mandal, P. (2021). Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. International Journal of Biological Macromolecules, 166, 1554–1569. https://doi.org/10.1016/j.ijbiomac.2020.11.035
De Farias, B. S., Sant’Anna Cadaval Junior, T. R., & De Almeida Pinto, L. A. (2019). Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. International Journal of Biological Macromolecules, 123, 210–220. https://doi.org/10.1016/j.ijbiomac.2018.11.042
DeGenring, L., Peter, K., & Poleatewich, A. (2023). Integration of Chitosan and Biopesticides to Suppress Pre-Harvest Diseases of Apple. Horticulturae, 9(6), 707. https://doi.org/10.3390/horticulturae9060707
Faizan, M., Rajput, V. D., Al-Khuraif, A. A., Arshad, M., Minkina, T., Sushkova, S., & Yu, F. (2021). Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum lycopersicum. Biology, 10(7), 666. https://doi.org/10.3390/biology10070666
García-Carrasco, M., Valdez-Baro, O., Cabanillas-Bojórquez, L. A., Bernal-Millán, M. J., Rivera-Salas, M. M., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2023). Potential Agricultural Uses of Micro/Nano Encapsulated Chitosan: A Review. Macromol, 3(3), 614–635. https://doi.org/10.3390/macromol3030034
Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E., El-Maghraby, L., Awad, A., & Abdelaal, K. (2020). Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy, 10(5), 630. https://doi.org/10.3390/agronomy10050630
Kumaraswamy, R. V., Saharan, V., Kumari, S., Chandra Choudhary, R., Pal, A., Sharma, S. S., Rakshit, S., Raliya, R., & Biswas, P. (2021). Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.). Plant Physiology and Biochemistry, 159, 53–66. https://doi.org/10.1016/j.plaphy.2020.11.054
Luangapai, F., Peanparkdee, M., & Iwamoto, S. (2019). Biopolymer films for food industries: Properties, applications, and future aspects based on chitosan. Reviews in Agricultural Science, 7(0), 59–67. https://doi.org/10.7831/ras.7.0_59
Malerba, M., & Cerana, R. (2019). Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers, 11(5), 839. https://doi.org/10.3390/polym11050839
Maluin, F. N., & Hussein, M. Z. (2020). Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules, 25(7), 1611. https://doi.org/10.3390/molecules25071611
Matraszek-Gawron, R., Chwil, M., Terlecka, P., & Skoczylas, M. M. (2019). Recent Studies on Anti-Depressant Bioactive Substances in Selected Species from the Genera Hemerocallis and Gladiolus: A Systematic Review. Pharmaceuticals, 12(4), 172. https://doi.org/10.3390/ph12040172
Michalik, R., & Wandzik, I. (2020). A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers, 12(10), 2425. https://doi.org/10.3390/polym12102425
Mujtaba, M., Khawar, K. M., Camara, M. C., Carvalho, L. B., Fraceto, L. F., Morsi, R. E., Elsabee, M. Z., Kaya, M., Labidi, J., Ullah, H., & Wang, D. (2020). Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. International Journal of Biological Macromolecules, 154, 683–697. https://doi.org/10.1016/j.ijbiomac.2020.03.128
Mukhtar Ahmed, K. B., Khan, M. M. A., Siddiqui, H., & Jahan, A. (2020). Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydrate Polymers, 227, 115331. https://doi.org/10.1016/j.carbpol.2019.115331
Oh, J.-W., Chun, S. C., & Chandrasekaran, M. (2019). Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato. Agronomy, 9(1), 21. https://doi.org/10.3390/agronomy9010021
Picos-Corrales, L. A., Sarmiento-Sánchez, J. I., Ruelas-Leyva, J. P., Crini, G., Hermosillo-Ochoa, E., & Gutierrez-Montes, J. A. (2020). Environment-Friendly Approach toward the Treatment of Raw Agricultural Wastewater and River Water via Flocculation Using Chitosan and Bean Straw Flour as Bioflocculants. ACS Omega, 5(8), 3943–3951. https://doi.org/10.1021/acsomega.9b03419
Quiñones-Valdez, R., Sánchez-Pale, J. R., Castañeda-Vildozola, Á., Mejorada-Gómez, E., & Johansen-Naime, R. (2020). Diversidad de trips (Insecta: Thysanoptera: Thripidae) asociados al cultivo de gladiolo en México. Revista Colombiana de Entomología, 46(1), e8607. https://doi.org/10.25100/socolen.v46i1.8607
Rios-Hernández, T. A., Uc-Varguez, A., & Evangelista-Martínez, Z. (2021). Biological control of Fusarium oxysporum causal agent of gladiolus corm rot by streptomycetes. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 39(3). https://doi.org/10.18781/R.MEX.FIT.2105-3
Riseh, R. S., Vazvani, M. G., & Kennedy, J. F. (2023). The application of chitosan as a carrier for fertilizer: A review. International Journal of Biological Macromolecules, 252, 126483. https://doi.org/10.1016/j.ijbiomac.2023.126483
Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers, 15(13), 2867. https://doi.org/10.3390/polym15132867
Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N., & Petropoulos, S. A. (2021). Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules, 11(6), 819. https://doi.org/10.3390/biom11060819
Sharma, A., Sood, K., Kaur, J., & Khatri, M. (2019). Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatalysis and Agricultural Biotechnology, 18, 101079. https://doi.org/10.1016/j.bcab.2019.101079
Sun, W., Shahrajabian, M. H., Petropoulos, S. A., & Shahrajabian, N. (2023). Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. Plants, 12(13), 2469. https://doi.org/10.3390/plants12132469
Tawaha, A. R., Jahan, N., Odat, N., Al-Ramamneh, E. A.-D., Al- Tawaha, A. R., Abu-Zaitoon, Y., Alhawatema, M., Amanullah, A., Abdur Rauf, A. R., & Wedyan, M. (2020). Growth, Yield and Biochemical Responses in Barley to DAP and Chitosan Application under Water Stress. Journal of Ecological Engineering, 21(6), 86–93. https://doi.org/10.12911/22998993/123251
Tomke, P. D., & Rathod, V. K. (2020). Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan –AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. International Journal of Biological Macromolecules, 149, 989–999. https://doi.org/10.1016/j.ijbiomac.2020.01.183
Uhlmann, L. O., Becker, C. C., Tomiozzo, R., Streck, N. A., Schons, A., Balest, D. S., Braga, M. D. S., Schwab, N. T., & Langner, J. A. (2019). A cultura do gladíolo como alternativa de diversificação e renda na pequena propriedade familiar. Ornamental Horticulture, 25(2), 200–208. https://doi.org/10.14295/oh.v25i2.1541
Vanti, G. L., Masaphy, S., Kurjogi, M., Chakrasali, S., & Nargund, V. B. (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. International Journal of Biological Macromolecules, 156, 1387–1395. https://doi.org/10.1016/j.ijbiomac.2019.11.179
Yu, J., Wang, D., Geetha, N., Khawar, K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 261, 117904. https://doi.org/10.1016/j.carbpol.2021.117904
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dr. Efraín Bernabé Lindo Gutarra, M.Sc. Anghely Rosario Lapa Chanca, Mg. Paul Simons Urdanegui Gago, Dr. Ruben Víctor Munive Cerrón

This work is licensed under a Creative Commons Attribution 4.0 International License.





