Effect of chitosan on the growth and development of gladiolus (Gladiolus sp.) in Mantaro, Jauja

Authors

Keywords:

Gladiolu, Chitosan, Greenhouse

Abstract

Chitosan is known for improving crop quality and yield, as well as acting as a bactericide and fungicide. To validate these effects, this research was conducted. Objective: To determine the optimal chitosan dosage and immersion time for enhancing the growth and development of gladiolus (Gladiolus sp.) corms. Method: The study was conducted in a greenhouse, using pots to evaluate each corm following the morphological evaluation method. Two immersion times (30 and 60 minutes) and five chitosan doses (10 ml, 15 ml, 20 ml, 25 ml, and 30 ml) at 1% per liter of water were tested. Ten treatments, plus a control, were applied, distributed in three blocks under a Completely Randomized Block Design (CRBD) with factorial analysis. Results: The treatment with 10 ml of chitosan at 1% and 30 minutes of immersion showed the best results in terms of the number of leaves, plant height, number of flowers, days to flower opening, and stem length. The second best treatment was 15 ml of chitosan at 1% with 30 minutes of immersion. Conclusion: The research concludes that the treatment with 10 ml of chitosan at 1% for 30 minutes of immersion optimizes the growth and development of gladiolus, improving the main morphological variables studied.

Downloads

Download data is not yet available.

References

Abo-Elsoud, M. M., & El Kady, E. M. (2019). Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre, 43(1), 59. https://doi.org/10.1186/s42269-019-0105-y

Adiletta, G., Zampella, L., Coletta, C., & Petriccione, M. (2019). Chitosan Coating to Preserve the Qualitative Traits and Improve Antioxidant System in Fresh Figs (Ficus carica L.). Agriculture, 9(4), 84. https://doi.org/10.3390/agriculture9040084

Ahmed, T., Noman, M., Luo, J., Muhammad, S., Shahid, M., Ali, Md. A., Zhang, M., & Li, B. (2021). Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. International Journal of Biological Macromolecules, 168, 834–845. https://doi.org/10.1016/j.ijbiomac.2020.11.148

Ambaye, T. G., Vaccari, M., Prasad, S., Van Hullebusch, E. D., & Rtimi, S. (2022). Preparation and applications of chitosan and cellulose composite materials. Journal of Environmental Management, 301, 113850. https://doi.org/10.1016/j.jenvman.2021.113850

Azimi, M. H. (2020). Evaluation yield and genetically factors in different cultivars of gladiolus. Ornamental Horticulture, 26(1), 8–17. https://doi.org/10.1590/2447-536x.v26i1.2027

Azmana, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. B., & Ahmed, S. (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules, 185, 832–848. https://doi.org/10.1016/j.ijbiomac.2021.07.023

Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, Md. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture, 10(12), 624. https://doi.org/10.3390/agriculture10120624

Chouhan, D., & Mandal, P. (2021). Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. International Journal of Biological Macromolecules, 166, 1554–1569. https://doi.org/10.1016/j.ijbiomac.2020.11.035

De Farias, B. S., Sant’Anna Cadaval Junior, T. R., & De Almeida Pinto, L. A. (2019). Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. International Journal of Biological Macromolecules, 123, 210–220. https://doi.org/10.1016/j.ijbiomac.2018.11.042

DeGenring, L., Peter, K., & Poleatewich, A. (2023). Integration of Chitosan and Biopesticides to Suppress Pre-Harvest Diseases of Apple. Horticulturae, 9(6), 707. https://doi.org/10.3390/horticulturae9060707

Faizan, M., Rajput, V. D., Al-Khuraif, A. A., Arshad, M., Minkina, T., Sushkova, S., & Yu, F. (2021). Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum lycopersicum. Biology, 10(7), 666. https://doi.org/10.3390/biology10070666

García-Carrasco, M., Valdez-Baro, O., Cabanillas-Bojórquez, L. A., Bernal-Millán, M. J., Rivera-Salas, M. M., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2023). Potential Agricultural Uses of Micro/Nano Encapsulated Chitosan: A Review. Macromol, 3(3), 614–635. https://doi.org/10.3390/macromol3030034

Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E., El-Maghraby, L., Awad, A., & Abdelaal, K. (2020). Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy, 10(5), 630. https://doi.org/10.3390/agronomy10050630

Kumaraswamy, R. V., Saharan, V., Kumari, S., Chandra Choudhary, R., Pal, A., Sharma, S. S., Rakshit, S., Raliya, R., & Biswas, P. (2021). Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.). Plant Physiology and Biochemistry, 159, 53–66. https://doi.org/10.1016/j.plaphy.2020.11.054

Luangapai, F., Peanparkdee, M., & Iwamoto, S. (2019). Biopolymer films for food industries: Properties, applications, and future aspects based on chitosan. Reviews in Agricultural Science, 7(0), 59–67. https://doi.org/10.7831/ras.7.0_59

Malerba, M., & Cerana, R. (2019). Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers, 11(5), 839. https://doi.org/10.3390/polym11050839

Maluin, F. N., & Hussein, M. Z. (2020). Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules, 25(7), 1611. https://doi.org/10.3390/molecules25071611

Matraszek-Gawron, R., Chwil, M., Terlecka, P., & Skoczylas, M. M. (2019). Recent Studies on Anti-Depressant Bioactive Substances in Selected Species from the Genera Hemerocallis and Gladiolus: A Systematic Review. Pharmaceuticals, 12(4), 172. https://doi.org/10.3390/ph12040172

Michalik, R., & Wandzik, I. (2020). A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers, 12(10), 2425. https://doi.org/10.3390/polym12102425

Mujtaba, M., Khawar, K. M., Camara, M. C., Carvalho, L. B., Fraceto, L. F., Morsi, R. E., Elsabee, M. Z., Kaya, M., Labidi, J., Ullah, H., & Wang, D. (2020). Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. International Journal of Biological Macromolecules, 154, 683–697. https://doi.org/10.1016/j.ijbiomac.2020.03.128

Mukhtar Ahmed, K. B., Khan, M. M. A., Siddiqui, H., & Jahan, A. (2020). Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydrate Polymers, 227, 115331. https://doi.org/10.1016/j.carbpol.2019.115331

Oh, J.-W., Chun, S. C., & Chandrasekaran, M. (2019). Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato. Agronomy, 9(1), 21. https://doi.org/10.3390/agronomy9010021

Picos-Corrales, L. A., Sarmiento-Sánchez, J. I., Ruelas-Leyva, J. P., Crini, G., Hermosillo-Ochoa, E., & Gutierrez-Montes, J. A. (2020). Environment-Friendly Approach toward the Treatment of Raw Agricultural Wastewater and River Water via Flocculation Using Chitosan and Bean Straw Flour as Bioflocculants. ACS Omega, 5(8), 3943–3951. https://doi.org/10.1021/acsomega.9b03419

Quiñones-Valdez, R., Sánchez-Pale, J. R., Castañeda-Vildozola, Á., Mejorada-Gómez, E., & Johansen-Naime, R. (2020). Diversidad de trips (Insecta: Thysanoptera: Thripidae) asociados al cultivo de gladiolo en México. Revista Colombiana de Entomología, 46(1), e8607. https://doi.org/10.25100/socolen.v46i1.8607

Rios-Hernández, T. A., Uc-Varguez, A., & Evangelista-Martínez, Z. (2021). Biological control of Fusarium oxysporum causal agent of gladiolus corm rot by streptomycetes. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 39(3). https://doi.org/10.18781/R.MEX.FIT.2105-3

Riseh, R. S., Vazvani, M. G., & Kennedy, J. F. (2023). The application of chitosan as a carrier for fertilizer: A review. International Journal of Biological Macromolecules, 252, 126483. https://doi.org/10.1016/j.ijbiomac.2023.126483

Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers, 15(13), 2867. https://doi.org/10.3390/polym15132867

Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N., & Petropoulos, S. A. (2021). Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules, 11(6), 819. https://doi.org/10.3390/biom11060819

Sharma, A., Sood, K., Kaur, J., & Khatri, M. (2019). Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatalysis and Agricultural Biotechnology, 18, 101079. https://doi.org/10.1016/j.bcab.2019.101079

Sun, W., Shahrajabian, M. H., Petropoulos, S. A., & Shahrajabian, N. (2023). Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. Plants, 12(13), 2469. https://doi.org/10.3390/plants12132469

Tawaha, A. R., Jahan, N., Odat, N., Al-Ramamneh, E. A.-D., Al- Tawaha, A. R., Abu-Zaitoon, Y., Alhawatema, M., Amanullah, A., Abdur Rauf, A. R., & Wedyan, M. (2020). Growth, Yield and Biochemical Responses in Barley to DAP and Chitosan Application under Water Stress. Journal of Ecological Engineering, 21(6), 86–93. https://doi.org/10.12911/22998993/123251

Tomke, P. D., & Rathod, V. K. (2020). Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan –AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. International Journal of Biological Macromolecules, 149, 989–999. https://doi.org/10.1016/j.ijbiomac.2020.01.183

Uhlmann, L. O., Becker, C. C., Tomiozzo, R., Streck, N. A., Schons, A., Balest, D. S., Braga, M. D. S., Schwab, N. T., & Langner, J. A. (2019). A cultura do gladíolo como alternativa de diversificação e renda na pequena propriedade familiar. Ornamental Horticulture, 25(2), 200–208. https://doi.org/10.14295/oh.v25i2.1541

Vanti, G. L., Masaphy, S., Kurjogi, M., Chakrasali, S., & Nargund, V. B. (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. International Journal of Biological Macromolecules, 156, 1387–1395. https://doi.org/10.1016/j.ijbiomac.2019.11.179

Yu, J., Wang, D., Geetha, N., Khawar, K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 261, 117904. https://doi.org/10.1016/j.carbpol.2021.117904

Downloads

Published

2025-06-30

Issue

Section

Original article