Efecto del Quitosano en el crecimiento y desarrollo del gladiolo (Gladiolus sp.) en Mantaro, Jauja

Autores/as

Palabras clave:

gladiolo, quitosano, invernadero

Resumen

El quitosano es conocido por mejorar la calidad y el rendimiento de las cosechas, además de actuar como bactericida y fungicida. Con el fin de validar estos efectos, se llevó a cabo esta investigación. Objetivo: Determinar la dosis y el tiempo de inmersión de los cormos para optimizar el crecimiento y desarrollo del gladiolo (Gladiolus sp.). Método: El estudio se realizó en un invernadero, utilizando macetas para evaluar cada cormo acorde al método de evaluación morfológica. Se probaron dos tiempos de inmersión (30 y 60 minutos) y cinco dosis de quitosano (10 ml, 15 ml, 20 ml, 25 ml y 30 ml) al 1% por litro de agua . Se implementaron 10 tratamientos, más un control, distribuidos en tres bloques bajo un Diseño de Bloques Completamente al Azar (DBCA) con análisis factorial. Resultados: El tratamiento con 10 ml de quitosano al 1% y 30 minutos de inmersión mostró los mejores resultados en cuanto a número de hojas, tamaño de planta, cantidad de flores, días hasta la apertura de la flor y longitud de la vara. El segundo mejor tratamiento fue el de 15 ml de quitosano al 1% con 30 minutos de inmersión. Conclusión: La investigación concluye que el tratamiento con 10 ml de quitosano al 1% durante 30 minutos de inmersión optimiza el crecimiento y desarrollo de los gladiolos, mejorando las principales variables morfológicas estudiadas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abo-Elsoud, M. M., & El Kady, E. M. (2019). Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre, 43(1), 59. https://doi.org/10.1186/s42269-019-0105-y

Adiletta, G., Zampella, L., Coletta, C., & Petriccione, M. (2019). Chitosan Coating to Preserve the Qualitative Traits and Improve Antioxidant System in Fresh Figs (Ficus carica L.). Agriculture, 9(4), 84. https://doi.org/10.3390/agriculture9040084

Ahmed, T., Noman, M., Luo, J., Muhammad, S., Shahid, M., Ali, Md. A., Zhang, M., & Li, B. (2021). Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. International Journal of Biological Macromolecules, 168, 834–845. https://doi.org/10.1016/j.ijbiomac.2020.11.148

Ambaye, T. G., Vaccari, M., Prasad, S., Van Hullebusch, E. D., & Rtimi, S. (2022). Preparation and applications of chitosan and cellulose composite materials. Journal of Environmental Management, 301, 113850. https://doi.org/10.1016/j.jenvman.2021.113850

Azimi, M. H. (2020). Evaluation yield and genetically factors in different cultivars of gladiolus. Ornamental Horticulture, 26(1), 8–17. https://doi.org/10.1590/2447-536x.v26i1.2027

Azmana, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. B., & Ahmed, S. (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules, 185, 832–848. https://doi.org/10.1016/j.ijbiomac.2021.07.023

Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, Md. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture, 10(12), 624. https://doi.org/10.3390/agriculture10120624

Chouhan, D., & Mandal, P. (2021). Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. International Journal of Biological Macromolecules, 166, 1554–1569. https://doi.org/10.1016/j.ijbiomac.2020.11.035

De Farias, B. S., Sant’Anna Cadaval Junior, T. R., & De Almeida Pinto, L. A. (2019). Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. International Journal of Biological Macromolecules, 123, 210–220. https://doi.org/10.1016/j.ijbiomac.2018.11.042

DeGenring, L., Peter, K., & Poleatewich, A. (2023). Integration of Chitosan and Biopesticides to Suppress Pre-Harvest Diseases of Apple. Horticulturae, 9(6), 707. https://doi.org/10.3390/horticulturae9060707

Faizan, M., Rajput, V. D., Al-Khuraif, A. A., Arshad, M., Minkina, T., Sushkova, S., & Yu, F. (2021). Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum lycopersicum. Biology, 10(7), 666. https://doi.org/10.3390/biology10070666

García-Carrasco, M., Valdez-Baro, O., Cabanillas-Bojórquez, L. A., Bernal-Millán, M. J., Rivera-Salas, M. M., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2023). Potential Agricultural Uses of Micro/Nano Encapsulated Chitosan: A Review. Macromol, 3(3), 614–635. https://doi.org/10.3390/macromol3030034

Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E., El-Maghraby, L., Awad, A., & Abdelaal, K. (2020). Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy, 10(5), 630. https://doi.org/10.3390/agronomy10050630

Kumaraswamy, R. V., Saharan, V., Kumari, S., Chandra Choudhary, R., Pal, A., Sharma, S. S., Rakshit, S., Raliya, R., & Biswas, P. (2021). Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.). Plant Physiology and Biochemistry, 159, 53–66. https://doi.org/10.1016/j.plaphy.2020.11.054

Luangapai, F., Peanparkdee, M., & Iwamoto, S. (2019). Biopolymer films for food industries: Properties, applications, and future aspects based on chitosan. Reviews in Agricultural Science, 7(0), 59–67. https://doi.org/10.7831/ras.7.0_59

Malerba, M., & Cerana, R. (2019). Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers, 11(5), 839. https://doi.org/10.3390/polym11050839

Maluin, F. N., & Hussein, M. Z. (2020). Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules, 25(7), 1611. https://doi.org/10.3390/molecules25071611

Matraszek-Gawron, R., Chwil, M., Terlecka, P., & Skoczylas, M. M. (2019). Recent Studies on Anti-Depressant Bioactive Substances in Selected Species from the Genera Hemerocallis and Gladiolus: A Systematic Review. Pharmaceuticals, 12(4), 172. https://doi.org/10.3390/ph12040172

Michalik, R., & Wandzik, I. (2020). A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers, 12(10), 2425. https://doi.org/10.3390/polym12102425

Mujtaba, M., Khawar, K. M., Camara, M. C., Carvalho, L. B., Fraceto, L. F., Morsi, R. E., Elsabee, M. Z., Kaya, M., Labidi, J., Ullah, H., & Wang, D. (2020). Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. International Journal of Biological Macromolecules, 154, 683–697. https://doi.org/10.1016/j.ijbiomac.2020.03.128

Mukhtar Ahmed, K. B., Khan, M. M. A., Siddiqui, H., & Jahan, A. (2020). Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydrate Polymers, 227, 115331. https://doi.org/10.1016/j.carbpol.2019.115331

Oh, J.-W., Chun, S. C., & Chandrasekaran, M. (2019). Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato. Agronomy, 9(1), 21. https://doi.org/10.3390/agronomy9010021

Picos-Corrales, L. A., Sarmiento-Sánchez, J. I., Ruelas-Leyva, J. P., Crini, G., Hermosillo-Ochoa, E., & Gutierrez-Montes, J. A. (2020). Environment-Friendly Approach toward the Treatment of Raw Agricultural Wastewater and River Water via Flocculation Using Chitosan and Bean Straw Flour as Bioflocculants. ACS Omega, 5(8), 3943–3951. https://doi.org/10.1021/acsomega.9b03419

Quiñones-Valdez, R., Sánchez-Pale, J. R., Castañeda-Vildozola, Á., Mejorada-Gómez, E., & Johansen-Naime, R. (2020). Diversidad de trips (Insecta: Thysanoptera: Thripidae) asociados al cultivo de gladiolo en México. Revista Colombiana de Entomología, 46(1), e8607. https://doi.org/10.25100/socolen.v46i1.8607

Rios-Hernández, T. A., Uc-Varguez, A., & Evangelista-Martínez, Z. (2021). Biological control of Fusarium oxysporum causal agent of gladiolus corm rot by streptomycetes. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 39(3). https://doi.org/10.18781/R.MEX.FIT.2105-3

Riseh, R. S., Vazvani, M. G., & Kennedy, J. F. (2023). The application of chitosan as a carrier for fertilizer: A review. International Journal of Biological Macromolecules, 252, 126483. https://doi.org/10.1016/j.ijbiomac.2023.126483

Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers, 15(13), 2867. https://doi.org/10.3390/polym15132867

Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N., & Petropoulos, S. A. (2021). Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules, 11(6), 819. https://doi.org/10.3390/biom11060819

Sharma, A., Sood, K., Kaur, J., & Khatri, M. (2019). Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatalysis and Agricultural Biotechnology, 18, 101079. https://doi.org/10.1016/j.bcab.2019.101079

Sun, W., Shahrajabian, M. H., Petropoulos, S. A., & Shahrajabian, N. (2023). Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. Plants, 12(13), 2469. https://doi.org/10.3390/plants12132469

Tawaha, A. R., Jahan, N., Odat, N., Al-Ramamneh, E. A.-D., Al- Tawaha, A. R., Abu-Zaitoon, Y., Alhawatema, M., Amanullah, A., Abdur Rauf, A. R., & Wedyan, M. (2020). Growth, Yield and Biochemical Responses in Barley to DAP and Chitosan Application under Water Stress. Journal of Ecological Engineering, 21(6), 86–93. https://doi.org/10.12911/22998993/123251

Tomke, P. D., & Rathod, V. K. (2020). Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan –AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. International Journal of Biological Macromolecules, 149, 989–999. https://doi.org/10.1016/j.ijbiomac.2020.01.183

Uhlmann, L. O., Becker, C. C., Tomiozzo, R., Streck, N. A., Schons, A., Balest, D. S., Braga, M. D. S., Schwab, N. T., & Langner, J. A. (2019). A cultura do gladíolo como alternativa de diversificação e renda na pequena propriedade familiar. Ornamental Horticulture, 25(2), 200–208. https://doi.org/10.14295/oh.v25i2.1541

Vanti, G. L., Masaphy, S., Kurjogi, M., Chakrasali, S., & Nargund, V. B. (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. International Journal of Biological Macromolecules, 156, 1387–1395. https://doi.org/10.1016/j.ijbiomac.2019.11.179

Yu, J., Wang, D., Geetha, N., Khawar, K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 261, 117904. https://doi.org/10.1016/j.carbpol.2021.117904

Descargas

Publicado

2025-06-30

Número

Sección

Artículo original