Efecto del Quitosano en el crecimiento y desarrollo del gladiolo (Gladiolus sp.) en Mantaro, Jauja
Palabras clave:
gladiolo, quitosano, invernaderoResumen
El quitosano es conocido por mejorar la calidad y el rendimiento de las cosechas, además de actuar como bactericida y fungicida. Con el fin de validar estos efectos, se llevó a cabo esta investigación. Objetivo: Determinar la dosis y el tiempo de inmersión de los cormos para optimizar el crecimiento y desarrollo del gladiolo (Gladiolus sp.). Método: El estudio se realizó en un invernadero, utilizando macetas para evaluar cada cormo acorde al método de evaluación morfológica. Se probaron dos tiempos de inmersión (30 y 60 minutos) y cinco dosis de quitosano (10 ml, 15 ml, 20 ml, 25 ml y 30 ml) al 1% por litro de agua . Se implementaron 10 tratamientos, más un control, distribuidos en tres bloques bajo un Diseño de Bloques Completamente al Azar (DBCA) con análisis factorial. Resultados: El tratamiento con 10 ml de quitosano al 1% y 30 minutos de inmersión mostró los mejores resultados en cuanto a número de hojas, tamaño de planta, cantidad de flores, días hasta la apertura de la flor y longitud de la vara. El segundo mejor tratamiento fue el de 15 ml de quitosano al 1% con 30 minutos de inmersión. Conclusión: La investigación concluye que el tratamiento con 10 ml de quitosano al 1% durante 30 minutos de inmersión optimiza el crecimiento y desarrollo de los gladiolos, mejorando las principales variables morfológicas estudiadas.
Descargas
Referencias
Abo-Elsoud, M. M., & El Kady, E. M. (2019). Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre, 43(1), 59. https://doi.org/10.1186/s42269-019-0105-y
Adiletta, G., Zampella, L., Coletta, C., & Petriccione, M. (2019). Chitosan Coating to Preserve the Qualitative Traits and Improve Antioxidant System in Fresh Figs (Ficus carica L.). Agriculture, 9(4), 84. https://doi.org/10.3390/agriculture9040084
Ahmed, T., Noman, M., Luo, J., Muhammad, S., Shahid, M., Ali, Md. A., Zhang, M., & Li, B. (2021). Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. International Journal of Biological Macromolecules, 168, 834–845. https://doi.org/10.1016/j.ijbiomac.2020.11.148
Ambaye, T. G., Vaccari, M., Prasad, S., Van Hullebusch, E. D., & Rtimi, S. (2022). Preparation and applications of chitosan and cellulose composite materials. Journal of Environmental Management, 301, 113850. https://doi.org/10.1016/j.jenvman.2021.113850
Azimi, M. H. (2020). Evaluation yield and genetically factors in different cultivars of gladiolus. Ornamental Horticulture, 26(1), 8–17. https://doi.org/10.1590/2447-536x.v26i1.2027
Azmana, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. B., & Ahmed, S. (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules, 185, 832–848. https://doi.org/10.1016/j.ijbiomac.2021.07.023
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, Md. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture, 10(12), 624. https://doi.org/10.3390/agriculture10120624
Chouhan, D., & Mandal, P. (2021). Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. International Journal of Biological Macromolecules, 166, 1554–1569. https://doi.org/10.1016/j.ijbiomac.2020.11.035
De Farias, B. S., Sant’Anna Cadaval Junior, T. R., & De Almeida Pinto, L. A. (2019). Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. International Journal of Biological Macromolecules, 123, 210–220. https://doi.org/10.1016/j.ijbiomac.2018.11.042
DeGenring, L., Peter, K., & Poleatewich, A. (2023). Integration of Chitosan and Biopesticides to Suppress Pre-Harvest Diseases of Apple. Horticulturae, 9(6), 707. https://doi.org/10.3390/horticulturae9060707
Faizan, M., Rajput, V. D., Al-Khuraif, A. A., Arshad, M., Minkina, T., Sushkova, S., & Yu, F. (2021). Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum lycopersicum. Biology, 10(7), 666. https://doi.org/10.3390/biology10070666
García-Carrasco, M., Valdez-Baro, O., Cabanillas-Bojórquez, L. A., Bernal-Millán, M. J., Rivera-Salas, M. M., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2023). Potential Agricultural Uses of Micro/Nano Encapsulated Chitosan: A Review. Macromol, 3(3), 614–635. https://doi.org/10.3390/macromol3030034
Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E., El-Maghraby, L., Awad, A., & Abdelaal, K. (2020). Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy, 10(5), 630. https://doi.org/10.3390/agronomy10050630
Kumaraswamy, R. V., Saharan, V., Kumari, S., Chandra Choudhary, R., Pal, A., Sharma, S. S., Rakshit, S., Raliya, R., & Biswas, P. (2021). Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.). Plant Physiology and Biochemistry, 159, 53–66. https://doi.org/10.1016/j.plaphy.2020.11.054
Luangapai, F., Peanparkdee, M., & Iwamoto, S. (2019). Biopolymer films for food industries: Properties, applications, and future aspects based on chitosan. Reviews in Agricultural Science, 7(0), 59–67. https://doi.org/10.7831/ras.7.0_59
Malerba, M., & Cerana, R. (2019). Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers, 11(5), 839. https://doi.org/10.3390/polym11050839
Maluin, F. N., & Hussein, M. Z. (2020). Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules, 25(7), 1611. https://doi.org/10.3390/molecules25071611
Matraszek-Gawron, R., Chwil, M., Terlecka, P., & Skoczylas, M. M. (2019). Recent Studies on Anti-Depressant Bioactive Substances in Selected Species from the Genera Hemerocallis and Gladiolus: A Systematic Review. Pharmaceuticals, 12(4), 172. https://doi.org/10.3390/ph12040172
Michalik, R., & Wandzik, I. (2020). A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers, 12(10), 2425. https://doi.org/10.3390/polym12102425
Mujtaba, M., Khawar, K. M., Camara, M. C., Carvalho, L. B., Fraceto, L. F., Morsi, R. E., Elsabee, M. Z., Kaya, M., Labidi, J., Ullah, H., & Wang, D. (2020). Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. International Journal of Biological Macromolecules, 154, 683–697. https://doi.org/10.1016/j.ijbiomac.2020.03.128
Mukhtar Ahmed, K. B., Khan, M. M. A., Siddiqui, H., & Jahan, A. (2020). Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydrate Polymers, 227, 115331. https://doi.org/10.1016/j.carbpol.2019.115331
Oh, J.-W., Chun, S. C., & Chandrasekaran, M. (2019). Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato. Agronomy, 9(1), 21. https://doi.org/10.3390/agronomy9010021
Picos-Corrales, L. A., Sarmiento-Sánchez, J. I., Ruelas-Leyva, J. P., Crini, G., Hermosillo-Ochoa, E., & Gutierrez-Montes, J. A. (2020). Environment-Friendly Approach toward the Treatment of Raw Agricultural Wastewater and River Water via Flocculation Using Chitosan and Bean Straw Flour as Bioflocculants. ACS Omega, 5(8), 3943–3951. https://doi.org/10.1021/acsomega.9b03419
Quiñones-Valdez, R., Sánchez-Pale, J. R., Castañeda-Vildozola, Á., Mejorada-Gómez, E., & Johansen-Naime, R. (2020). Diversidad de trips (Insecta: Thysanoptera: Thripidae) asociados al cultivo de gladiolo en México. Revista Colombiana de Entomología, 46(1), e8607. https://doi.org/10.25100/socolen.v46i1.8607
Rios-Hernández, T. A., Uc-Varguez, A., & Evangelista-Martínez, Z. (2021). Biological control of Fusarium oxysporum causal agent of gladiolus corm rot by streptomycetes. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 39(3). https://doi.org/10.18781/R.MEX.FIT.2105-3
Riseh, R. S., Vazvani, M. G., & Kennedy, J. F. (2023). The application of chitosan as a carrier for fertilizer: A review. International Journal of Biological Macromolecules, 252, 126483. https://doi.org/10.1016/j.ijbiomac.2023.126483
Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers, 15(13), 2867. https://doi.org/10.3390/polym15132867
Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N., & Petropoulos, S. A. (2021). Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules, 11(6), 819. https://doi.org/10.3390/biom11060819
Sharma, A., Sood, K., Kaur, J., & Khatri, M. (2019). Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatalysis and Agricultural Biotechnology, 18, 101079. https://doi.org/10.1016/j.bcab.2019.101079
Sun, W., Shahrajabian, M. H., Petropoulos, S. A., & Shahrajabian, N. (2023). Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. Plants, 12(13), 2469. https://doi.org/10.3390/plants12132469
Tawaha, A. R., Jahan, N., Odat, N., Al-Ramamneh, E. A.-D., Al- Tawaha, A. R., Abu-Zaitoon, Y., Alhawatema, M., Amanullah, A., Abdur Rauf, A. R., & Wedyan, M. (2020). Growth, Yield and Biochemical Responses in Barley to DAP and Chitosan Application under Water Stress. Journal of Ecological Engineering, 21(6), 86–93. https://doi.org/10.12911/22998993/123251
Tomke, P. D., & Rathod, V. K. (2020). Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan –AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. International Journal of Biological Macromolecules, 149, 989–999. https://doi.org/10.1016/j.ijbiomac.2020.01.183
Uhlmann, L. O., Becker, C. C., Tomiozzo, R., Streck, N. A., Schons, A., Balest, D. S., Braga, M. D. S., Schwab, N. T., & Langner, J. A. (2019). A cultura do gladíolo como alternativa de diversificação e renda na pequena propriedade familiar. Ornamental Horticulture, 25(2), 200–208. https://doi.org/10.14295/oh.v25i2.1541
Vanti, G. L., Masaphy, S., Kurjogi, M., Chakrasali, S., & Nargund, V. B. (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. International Journal of Biological Macromolecules, 156, 1387–1395. https://doi.org/10.1016/j.ijbiomac.2019.11.179
Yu, J., Wang, D., Geetha, N., Khawar, K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 261, 117904. https://doi.org/10.1016/j.carbpol.2021.117904
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Dr. Efraín Bernabé Lindo Gutarra, M.Sc. Anghely Rosario Lapa Chanca, Mg. Paul Simons Urdanegui Gago, Dr. Ruben Víctor Munive Cerrón

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.





