Effects of the competencies of multiple actors in the management of the reduction of water scarcity in the sub-basin of the Shullcas River, metropolitan area of Huancayo-Peru

Authors

Keywords:

competencies, management, water resources, shortage, water

Abstract

Se buscó determinar los efectos de la diversidad de competencias técnicas, financieras, legales, sociales y ambientales de los múltiples actores en la gestión de la reducción de escasez de agua en la sub cuenca del río Shullcas, área metropolitana de Huancayo-Perú. (2) Método: basado en cuasi experimentos, de corte transversal, semi cuantitativo, que incluyó población y muestra intencionada de 21 organizaciones, con competencias definidas por ley o estatuto u otros, operacionalizadas en encuestas, interrelacionadas en modelos participativos, diagramas causa-efecto y mapas cognitivos difusos, apoyadas por el software mentalmodeler. (3) Resultados: del total de respuestas obtenidas, el 25% precisaron competencias de tipo social, 22% de tipo ambiental, 20% de tipo técnica, 19% de tipo legal y 13% de tipo financiera, pero no reflejaron acciones importantes en la gestión de reducción de escasez de agua (4%). (4) Conclusiones: en la dinámica de los escenarios hipotéticos se determinó efectos importantes en la gestión de la reducción de la escasez de agua a través de cambios fuertes favorables (+1) en la ejecución de las variables de estado de las competencias legales, de las competencias técnicas, de las competencias ambientales, de las competencias financieras, y de las competencias sociales; con 40%, 35%, 35%, 30%, y 25% de variables de estado preferidos en escenarios futuros respectivamente.

References

Alvarez-Garreton, C., Boisier, J. P., Billi, M., Lefort, I., Marinao, R., & Barría, P. (2023). Protecting environmental flows to achieve long-term water security. Journal of Environmental Management, 328, 116914. https://doi.org/10.1016/j.jenvman.2022.116914

Alves, A., Gersonius, B., Sanchez, A., Vojinovic, Z., & Kapelan, Z. (2018). Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resources Management, 32(7), 2505-2522. https://doi.org/10.1007/s11269-018-1943-3

Alves, A., Vojinovic, Z., Kapelan, Z., Sanchez, A., & Gersonius, B. (2020). Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Science of The Total Environment, 703, 134980. https://doi.org/10.1016/j.scitotenv.2019.134980

Arana, F. (2021). Incidencia de la movilidad urbana en el crecimiento insostenible de la ciudad de Huancayo. Arquitectura y Urbanismo, XLII(3), 112-117.

Borràs, S., & Villavicencio, P. (2023). Vulnerabilidades climáticas y desplazamiento interno en España: Dos realidades complejas e interconectadas. Revista Catalana de Dret Ambiental, 14(1). https://doi.org/10.17345/rcda3587

Bureš, V. (2017). A Method for Simplification of Complex Group Causal Loop Diagrams Based on Endogenisation, Encapsulation and Order-Oriented Reduction. Systems, 5(3), 46. https://doi.org/10.3390/systems5030046

Castro, C. V. (2022). Systems-thinking for environmental policy coherence: Stakeholder knowledge, fuzzy logic, and causal reasoning. Environmental Science & Policy, 136, 413-427. https://doi.org/10.1016/j.envsci.2022.07.001

Coletta, V. R., Pagano, A., Pluchinotta, I., Fratino, U., Scrieciu, A., Nanu, F., & Giordano, R. (2021). Causal Loop Diagrams for supporting Nature Based Solutions participatory design and performance assessment. Journal of Environmental Management, 280, 111668. https://doi.org/10.1016/j.jenvman.2020.111668

De Miguel, F. M. (2006). Metodologías de enseñanzas y aprendizaje para el desarrollo de competencias: Orientaciones para el profesorado universitario ante el espacio europeo de educación superior. Alianza. https://dialnet.unirioja.es/servlet/libro?codigo=293088

Desbureaux, S., & Rodella, A.-S. (2019). Drought in the city: The economic impact of water scarcity in Latin American metropolitan areas. World Development, 114, 13-27. https://doi.org/10.1016/j.worlddev.2018.09.026

Faivre, N., Fritz, M., Freitas, T., De Boissezon, B., & Vandewoestijne, S. (2017). Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environmental Research, 159, 509-518. https://doi.org/10.1016/j.envres.2017.08.032

Giordano, R., & Liersch, S. (2012). A fuzzy GIS-based system to integrate local and technical knowledge in soil salinity monitoring. Environmental Modelling & Software, 36, 49-63. https://doi.org/10.1016/j.envsoft.2011.09.004

Gray, S. A., Gray, S., Cox, L. J., & Henly-Shepard, S. (2013). Mental Modeler: A Fuzzy-Logic Cognitive Mapping Modeling Tool for Adaptive Environmental Management. 2013 46th Hawaii International Conference on System Sciences, 965-973. https://doi.org/10.1109/HICSS.2013.399

Gray, S. A., Gray, S., De Kok, J. L., Helfgott, A. E. R., O’Dwyer, B., Jordan, R., & Nyaki, A. (2015). Using fuzzy cognitive mapping as a participatory approach to analyze change, preferred states, and perceived resilience of social-ecological systems. Ecology and Society, 20(2), art11. https://doi.org/10.5751/ES-07396-200211

Inam, A., Adamowski, J., Halbe, J., & Prasher, S. (2015). Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: A case study in the Rechna Doab watershed, Pakistan. Journal of Environmental Management, 152, 251-267. https://doi.org/10.1016/j.jenvman.2015.01.052

Jetter, A., & Schweinfort, W. (2011). Building scenarios with Fuzzy Cognitive Maps: An exploratory study of solar energy. Futures, 43(1), 52-66. https://doi.org/10.1016/j.futures.2010.05.002

Jha, A. K., Bloch, R., & Lamond, J. (2012). Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. The World Bank. https://doi.org/10.1596/978-0-8213-8866-2

Jones, N. A., Ross, H., Lynam, T., Perez, P., & Leitch, A. (2011). Mental Models: An Interdisciplinary Synthesis of Theory and Methods. Ecology and Society, 16(1), art46. https://doi.org/10.5751/ES-03802-160146

Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of The Total Environment, 610-611, 997-1009. https://doi.org/10.1016/j.scitotenv.2017.08.077

McGill, B. M., Altchenko, Y., Hamilton, S. K., Kenabatho, P. K., Sylvester, S. R., & Villholth, K. G. (2019). Complex interactions between climate change, sanitation, and groundwater quality: A case study from Ramotswa, Botswana. Hydrogeology Journal, 27(3), 997-1015. https://doi.org/10.1007/s10040-018-1901-4

Oppliger, A., Höhl, J., & Fragkou, M. (2019). Escasez de agua: Develando sus orígenes híbridos en la cuenca del Río Bueno, Chile. Revista de Geografía Norte Grande, 73, 9-27. https://doi.org/10.4067/S0718-34022019000200009

Qin, G., Meng, Z., & Fu, Y. (2022). Drought and water-use efficiency are dominant environmental factors affecting greenness in the Yellow River Basin, China. Science of The Total Environment, 834, 155479. https://doi.org/10.1016/j.scitotenv.2022.155479

Sterman, J. D. (2001). System Dynamics Modeling: Tools for Learning in a Complex World. California Management Review, 43(4), 8-25. https://doi.org/10.2307/41166098

Tiwary, A., & Kumar, P. (2014). Impact evaluation of green–grey infrastructure interaction on built-space integrity: An emerging perspective to urban ecosystem service. Science of The Total Environment, 487, 350-360. https://doi.org/10.1016/j.scitotenv.2014.03.032

Downloads

Published

2025-03-05

Issue

Section

1. Ciencias de la Administración