Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles


  • Pamela Torres Flores

Palabras clave:

Chitosan, nanoparticles, biomedical, pharmaceuticals, toxicity


engineering to improve the quality of life. Chitosan-based nanomaterials are on the forefront and attract wide interest due to their versatile physicochemical characteristics such as biodegradability, biocompatibility, and non-toxicity, which play a promising role in biological applications. Chitosan and its derivatives are employed in several applications including pharmaceuticals and biomedical engineering. This article presents a comprehensive overview of recent dvances in chitosan derivatives  ve nanaparticulas and nanoparticle synthesis, as well as emerging applications in medicine, tissue engineering, drug delivery, gene therapy, and cancer therapy. In addition to the applications, we critically review themain concerns and mitigation strategies related to chitosan bactericidal properties, toxicity/safetyusing tissue cultures and animal models, and also their potential environmental impact. At the endnbof this review, we also provide some of future directions and conclusions that are important for expanding the field of biomedical applications of the chitosan nanoparticles.


Los datos de descargas todavía no están disponibles.


Patil, A.; Mishra, V.; Thakur, S.; Riyaz, B.; Kaur, A.; Khursheed, R.; Patil, K.; Sathe, B. Nanotechnology Derived Nanotools in Biomedical Perspectives: An Update. Curr. Nanosci. 2019, 15, 137–146. [CrossRef]

Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012, 112, 5818–5878. [CrossRef]

Bitar, A.; Ahmad, N.M.; Fessi, H.; Elaissari, A. Silica-based nanoparticles for biomedical applications. Drug Discov. Today 2012, 17, 1147–1154. [CrossRef]

Capeletti, L.B.; Loiola, L.M.D.; Picco, A.S.; da Silva Liberato, M.; Cardoso, M.B. 8–Silica Nanoparticle Applications in the Biomedical Field. In Smart Nanoparticles for Biomedicine; Ciofani, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 115–129.

Khatami, M.; Alijani, H.Q.; Heli, H.; Sharifi, I. Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical eciency. Ceram. Int. 2018, 44, 15596–15602. [CrossRef]

Vijayakumar, S.; Mahadevan, S.; Arulmozhi, P.; Sriram, S.; Praseetha, P.K. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Mater. Sci. Semicond. Process. 2018, 82, 39–45. [CrossRef]

Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Kheiri Manjili, H. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem. 2018, 76, 501–509. [CrossRef] [PubMed]

Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 115–126. [CrossRef] [PubMed]

Salehiabar, M.; Nosrati, H.; Javani, E.; Aliakbarzadeh, F.; Kheiri Manjili, H.; Davaran, S.; Danafar, H. -- Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol. 2018, 115, 83–89. [CrossRef]

Nosrati, H.; Salehiabar, M.; Manjili, H.K.; Danafar, H.; Davaran, S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol. 2018, 108, 909–915. [CrossRef]




Cómo citar

Torres Flores, P. (2022). Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. uimica mbiental, 1(1). ecuperado a partir de



Artículos de revisión